IMPACT OF WILLOW INVASION ON WATER AND CARBON EXCHANGE IN THE VEGETATION OF A SUBTROPICAL WETLAND

Florida Atlantic Univers

Shrub encroachment in subtropical Florida

le Bud

Problem for subtropical wetlands

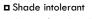
Expansion over last 40 years

Fire suppression

Altered hydrology (drying)

Disturbed soils

Replace communities


Sawgrass (Cladium jamaicense)

Carolina willow (Salix caroliniana)

Native to Florida

 $\hfill\square$ Woody, deciduous broadleaf

■ Up to 10 m tall, 35 cm diameter, 50 yrs

Grow after disturbances

Consequences	of	shrub	invasion	

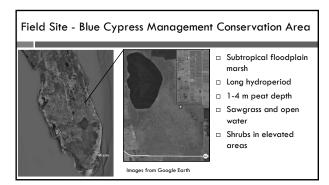
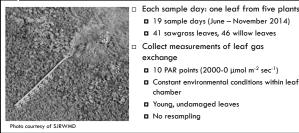

- $\hfill\square$ Change plant community composition
- $\hfill\square$ Accelerate ecosystem gas exchange (carbon and water)
- $\hfill\square$ Evapotranspiration rates could increase
 - Reduce water availability

Table 1: Comparison of physiological characteristics of sawgrass and willow

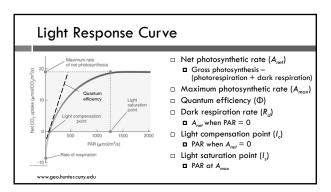
Species	Growth morphology	Stomatal Conductance (mmol H ₂ O m ⁻² s ⁻¹)	Transpiration (mm day ⁻¹)
Sawgrass	Perennial graminoid	152 ±12°	3.16 - 5.93 ^b
Willow spp.	Deciduous broadleaf	~170°	1.54 - 16.34 ^d

Objectives

- Quantify leaf gas exchange of sawgrass and willow (Leaf gas exchange: movement of CO₂ and water vapor)
- Estimate effects of land cover change

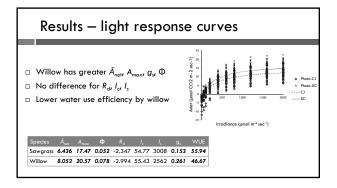


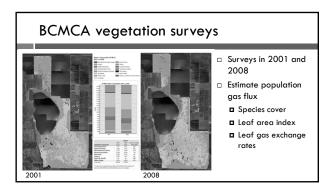
Leaf gas exchange measurements

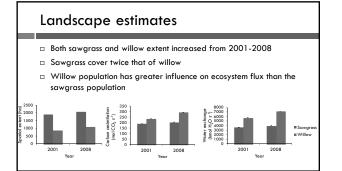

- LI-6400xt portable photosynthesis system Non-destructive sampling
 - \blacksquare Net photosynthesis (A_{net}) and stomatal conductance (g_s)

Light response data

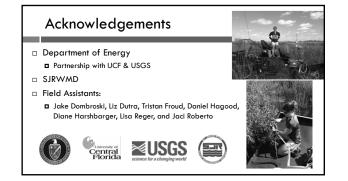
- 19 sample days (June November 2014) ■ 41 sawgrass leaves, 46 willow leaves Collect measurements of leaf gas
- Constant environmental conditions within leaf




Parameter calculation and analysis


- $\hfill\square$ Non-linear least squares regression
- Model used to calculate physiological parameters
- □ Water use efficiency (WUE):
 CO₂ stored for water lost during photosynthesis (A_{net}/g_s)

Parameters compared between species



Implications

Take home message:

- Willow has higher gas exchange rates, lower WUEHigher ecosystem exchange even at smaller area
- □ Future considerations:
 - Leaf age and canopy position
 - Responses to water level manipulation
 - Improve wetland water and carbon exchange
 - models
 - Changes in groundwater availability, relate to human use

